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Abstract

Johnson & Johnson (J&J) forecasts insurance payouts to wisely price and comprehend the costs of
the medical devices they produce. In this project, we have implemented novel approaches to predict
the payout prices at Surgery Procedure type, Metropolitan Statistical Areas (MSAs) and Year level.
There are two main challenges in predicting MSA-level payout. Firstly, only ~10% of Americans
having employer-based insurance have the claims level data. Thus, the data might only represent
some of the population across the USA. Secondly, the granularity of the prediction is tricky as the
number of claims for some procedures within some MSAs is either low or unavailable for inference.
The J&J team uses DataRobot, an AutoML tool, to predict payouts. In the project, we have tried to
improve the prior results and added a pipeline to obtain the procedure-level performance metrics
like Mean Absolute Percentage Error (MAPE) and R2 to remove the dependency on the
DataRobot[1].

1. Introduction

Prediction of commercial insurance payments for surgical procedures is a project sponsored by
Johnson & Johnson (J&J). It is necessary to quantify customer economics, including the revenue
(payment amounts), to comprehend the value that Johnson & Johnson Medical Devices (JJMD)
produce. About 10% of Americans participating in employer-sponsored health insurance plans have
claim-level data, including payment amounts, in the IBM MarketScan® Commercial Claims and
Encounters (CCAE) database. The claim counts for surgeries within some metropolitan statistical
areas (MSAs) are either too low (e.g., 50) or unavailable for inference, even though this data is an
effective source for assessing national trends in surgical care for this population. Therefore, novel
approaches are needed to fill up knowledge gaps in healthcare economics locally. Thus, in this
project, we propose a novel machine-learning approach to address payment information gaps at the
MSA level. Furthermore, we aim to improve the results given by the AutoML platform, DataRobot,
which was previously used in this project.

According to our knowledge, no research was done to examine the potential of using machine
learning (ML) to forecast the costs of JJMD surgeries at certain commercial facilities. Our study
required a novel strategy to estimate procedure-specific commercial reimbursement inside MSAs
where these data are lacking or insufficient. With the help of the AutoML platform DataRobot



(DataRobot, Inc., Massachusetts, USA) [1] and a novel approach, this research combined the
features from several datasets (Census, Medicare, and IBM) for prediction.

● Impact and value to the business: To comprehend the value of client compensation, which
eliminates the need to buy expensive data sets.

● Application and Scalability: It is simple to add new surgical categories by expanding the input
parameters and procedure codes. As required, models can also be used for distributed
analysis.

2. Exploratory Data Analysis

A series of preprocessing steps were conducted on the datasets used in this project. To build the
final dataset, we combined data from four different sources:

● Hospital Dataset: This dataset contains data about all the hospitals across all regions of the
US, holding their MSA codes and the amount paid to each of these hospitals throughout the
COVID-19 pandemic.

● MSA Data: This dataset contains information about all MSAs across the US and reports
their population estimates for three consecutive years (2010, 2011 and 2012). We further
connect this with life expectancy data to combine life expectancy and population
information.

● Average Income Data[2]: This dataset contains MSA-level average family incomes for
households in that MSA.

● Life Expectancy Data[3]: This county-level dataset gives the average life expectancy for all
counties across the US. We further connect this with MSA data to combine life expectancy
and population information.

All these data sources were eventually merged into one master data file that was further used for
exploratory data analysis and model building. We show the various EDA done below.

Fig 1. Missing value analysis of  variables

Figure 1 displays the columns along the percentages of the missing value. Only columns having >1%
missing values are displayed in the above chart. There are >80% missing values in mcare-related
features (mean, median and standard deviation), and missing value indicators will be used instead.
Avg Income and Population Estimated were imputed by the corresponding MSA-level mean values.



The choropleths below (Figure 2 and Figure 3) show the distribution of hospitals and life
expectancy, respectively, spread across all the states of the US. We see that Texas has the highest
number of hospitals in the US, while Wyoming has the least. Also, we observe that average life
expectancy is higher in New Hampshire, Massachusetts and New York, while it is low in Georgia
and Alabama. These analyses help us during the modeling as anticipating the insurance amount
spent on surgeries will correlate with the average life expectancy and number of  hospitals in regions.

Fig 2. Choropleth plot of  count of  hospitals in the US

Fig 3. Choropleth plot of  average life expectancy across the states of  US

The plot below (Figure 4) shows us that our target variable is skewed to the right. It is affected by
the mean, which is more towards the left. To make the model function better, we transform our
target variable to be normally distributed. We tried two transformations, box-cox and log, to
establish this. We can see from the plot below (Figure 5) that our target variable has converged to a
normal distribution by using the Box-Cox transformation. We also tried to convert our target
variable to be normally distributed by doing a log transformation (Figure 6). But the Box-Cox
transformation does a better job than the log transformation.



Fig 4. Histogram depicting the target variable Fig 5. Log Transform of  the target variable

We also checked the distribution of  various procedures with respect to the mean payout in the box
plot below. This plot shows numerous instances where the prices of  surgical procedures have
resulted in an amount significantly higher than the mean payout amount indicating an uneven
distribution of  mean prices.

Fig 6. Box plot of  payout distribution for different procedure groups



3. Methodology

3.1 Our Approach

After the initial exploratory data analysis, we realized that most of our data set was empty or, in
other words, sparse. To correctly predict our target variable ‘priv_pay_median’ concerning a certain
MSA, we needed to build our features. We used data from various census, economic, average
income, and life expectancy data to make these features. These data were combined with the initial
dataset concerning the MSA column, and additional hospital data was provided by Johnson &
Johnson, which was also incorporated. Linear Regression was considered a baseline model, and a
Decision Tree Regressor was also implemented. We also created a pipeline for the machine learning
models to eradicate the repeated task of cleaning and encoding data. Post the successful deployment
of our baseline model; we then sought to improve it by further refining our evaluations and
methods. We tried implementing random forest, elastic net and XGBoost into our data and finally
found that gradient boosting, specifically XGBoost, was the best-performing algorithm. Once we
finalized the algorithm, we used bayesian optimisation techniques to tune the optimal
hyperparameters for our model.

Fig 7. Outline of  our approach to solving this problem

3.2 Datasets

We used a combination of data from J&J and public data sources like the US Census. The Hospital
Dataset provided to us by J&J contains data about all the hospitals across all regions of the US. It
holds their MSA codes and the amount paid to each of these hospitals throughout the COVID-19



pandemic. We also sourced an MSA dataset that contains information about all MSAs across the US
and reports their population estimates for three consecutive years (2010, 2011 and 2012). We further
connect this with life expectancy data to combine life expectancy and population information. We
combined the datasets into one final data file, which was then used for the model building and
preparation from this point on. Additional datasets we sourced and used for the project helped
construct our custom feature sets during model preparation.

3.3 Initial Data Preprocessing

Initial Preprocessing started by checking how much data was missing for each column in the data
given to us by Johnson & Johnson. Once initial analysis for missing data was done, we realized that
most of the data was sparse or missing. Also, looking at the target variable and its missingness, we
figured out that our target variable, Mean Payout, was missing approximately 60% of the data. It was
an interesting problem, given the modeling we had to perform. There was not much we could do, or
any of  the algorithms would not perform well with the amount of  data we had.

Next, we created features to incorporate the missingness in our data. We added Avg. Income,
Population, Life Expectancy, Geographical Location and as such in our original dataset. We also
added the haversine distance feature in our dataset to extract information from the latitude and
longitude information given to us, which merged very well and provided more details with the MSA
data.

Another technique to process the MSA and the procedure type was also included in the analysis. We
applied the k-medoids method to cluster our data, hoping the accuracy would increase. But even
with clustering, the accuracy did not improve as we had hoped, so we did not move forward with the
preprocessing through this technique.

3.4 Feature Engineering

To improve the quality of the dataset that we would be using to build and test novel machine
learning models, we first performed some feature engineering tasks to clean the data and

● Missing Value Analysis - To start with, we removed all the rows in the dataset that were
missing the target variable. This amounted to about 60% of the total dataset. We attempted
to use various imputation techniques, including some deep learning approaches, but because
the availability of data for training these imputation models was only 40% of the total
available data, none of the imputation techniques helped with the model’s accuracy.
Therefore, we removed all the rows where the target variable was missing.

● Target Variable Imputation - Imputed the target variable (different numbers of rows) using
KNN, Decision Tree, Random Forest and deep learning techniques. However, the results
regarding MAPE were not convincing enough as a trade-off towards introducing bias in the
predictions.

● Encoding Geospatial Data - Geographical location data in our dataset, corresponding to
MSA and hospital locations, was in the latitude and longitude format. Using this data in the
form of text would not have been beneficial to the overall modeling process and therefore,



to turn them into numeric features, we used haversine distance calculation and encoded
these geographical locations to numeric features.

● Scaling Features - The scale of our dependent and independent variables was vastly out of
proportion. Hence, we tried using some transformations not limited to box cox and logs to
bring the variable to a comparable scale. Based on the best performance, we chose to log
transform the target variable. We have applied the following transformations depending on
the type of  variable.

○ For continuous variables, we have used standardization (standard scaling)
○ For categorical variables, we have used one hot encoding transformation.
○ For categorical variables with many categories, we have applied target encoding.

● Monotonicity Constraints - An important business task from J&J was to impose
monotonicity constraints on the model. To do the same, we used the site weight feature to
add a custom weight during the model training process.

● Clustering: we also some clustering techniques on the hospital datasets and added cluster
numbers to the final dataset as categorical variables

○ Density-based spatial clustering of  applications with noise (DBSCAN)
○ K-Medoids
○ Using the Hospital dataset directly instead of  cluster numbers.

● Deciding the threshold value for the minimum number of procedures - To have a
representative sample, we decided to have a threshold of 30 surgeries for each procedure
within an MSA. This was chosen for the following reasons:

○ No. of  training samples remaining after filtering - we want a large dataset.
○ No. of  unique procedures - ideally want the set to be exhaustive
○ The threshold should be higher enough to represent the actual summary

(mean/median/mode) and withstand the effect of  outliers.
○ The graphs below, show our approach for calculating the final threshold

Fig 8. Threshold calculation based on procedures Fig 9. Threshold calculation based on samples



3.5 Clustering

We have used features from the “cost discharge dataset” containing information on discharge cost
for a certain group and procedure. As per our discussion with J&J Team, these features can be
helpful in terms of improving the model performance for predicting mean payout. We planned to
divide the cost discharge information into several clusters. Each cluster will be assigned a cluster
number embedded with master dataset features at the procedure and group level.

● Transforming cost discharge dataset features for clustering: There are different types
of categorical, ordinal, and nominal features within the cost discharge dataset which need to
be transformed so that we can further apply clustering techniques. The challenge is, we need
to apply appropriate transformations which can incorporate all the information from the
features before applying any clustering algorithm. After exploring the possible options, we
decided to transform the features into Gower distances.

● Computing Gower distances: Gower’s Distance can be used to measure the distinction
between two records. The records may contain logical, categorical, numerical or text data.
The distance is always between 0 (identical) and 1 (maximally dissimilar). Gower’s Distance
uses different metrics for each data type. The metrics for each data type are described below:

a. Quantitative (interval): Range-normalized Manhattan distance.
b. Ordinal: Variable is first ranked, then Manhattan distance is used with a special

adjustment for ties.
c. Nominal: Variables of k categories are first converted into k binary columns and then

the Dice coefficient is used.

● Applying Clustering Techniques: We have applied different clustering techniques after
transforming the input dataset features using Gower distances. A brief overview of different
clustering algorithms has been provided below:

● DBSCAN Clustering

Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering
algorithm. It is a density-based clustering non-parametric algorithm given a set of points
in some space, it groups together points that are closely packed together (points with
many nearby neighbors), marking as outliers points that lie alone in low-density regions
(whose nearest neighbors are too far away). DBSCAN is one of the most common
clustering algorithms and is also the most cited in scientific literature.

The DBSCAN algorithm can be abstracted into the following steps:
I. Find the points in the ε (eps) neighborhood of every point and identify the core

points with more than min_samples neighbors.
II. Find the connected components of core points on the neighbor graph, ignoring all

non-core points.
III. Assign each non-core point to a nearby cluster if the cluster is an ε (eps) neighbor,

otherwise, assign it to noise.



Note: Here “ε” (eps) and “min_samples” are the model hyperparameters.

After transforming the dataset features, we applied the DBSCAN algorithm. After
algorithm tuning, we found ε = 0.4 and min_samples = 2 to be the optimal
hyperparameters. This algorithm has divided the data into eight clusters whereas cluster
number “-1” represents the data with noise. The cluster composition after running this
algorithm has been provided below:

Table 1. Aggregated cluster composition for each cluster group for DBSCAN

Fig 10. Segregation of  different procedure groups within different cluster numbers using DBSCAN

After carefully analyzing the above plot, we can clearly say that the DBSCAN algorithm has
correctly clustered the data based on different procedure groups.  Moreover, certain
procedure groups with insufficient data (only 1 sample) have been moved to the “-1” cluster
representing the noise.



● KMedoids Clustering

The k-medoids problem is a clustering problem similar to k-means. Both the k-means and
k-medoids algorithms are partitional (breaking the dataset up into groups) and attempt to
minimize the distance between points labeled to be in a cluster and a point designated as the
center of that cluster. In contrast to the k-means algorithm, k-medoids chooses actual data
points as centers (medoids or exemplars), and thereby allows for greater interpretability of
the cluster centers than in k-means, where the center of a cluster is not necessarily one of the
input data points (it is the average between the points in the cluster). Furthermore,
k-medoids can be used with arbitrary dissimilarity measures, whereas k-means generally
requires Euclidean distance for efficient solutions. Because k-medoids minimize a sum of
pairwise dissimilarities instead of a sum of squared Euclidean distances, it is more robust to
noise and outliers than k-means.

After transforming the dataset features, we applied the KMedoids algorithm. The optimal
value of choosing the number of clusters is “5” which has been evaluated using the
Silhouette method. The cluster composition after running this algorithm has been provided
below.

Table 2. Aggregated cluster composition for each cluster group for K-Medoids

Fig 11.  Segregation of  different procedure groups within different cluster numbers using KMedoids



After analyzing the different cluster groups shown in the above plot, the K-Medoids
algorithm has segregated data based on different procedure group types. The procedure
group time with a similar correlation has been placed within a single cluster. For instance, the
Cardiac Electrophysiology (ICE) and Cardiovascular Diseases (CD) have been segregated to
cluster number “1” from the entire data.

3.6 Feature Selection

No. of  observations in the dataset

Initial Rows: 133,089

Joining with Procedure Data: 129,275

Removing missing Target: 54,183

Applying cutoff  of  30: 5,821

No. of  Columns in the dataset

Initial Columns: 19

Joining with Procedure Data and feature
engineering: 113

Removing after business logic and
correlation/VIF: 61

Using Feature Importance: 32

Table 3. Feature Selection

On completion of the feature engineering step, all the independent and dependent variables were
now scaled and ready for modeling. But, not every column of the data was needed for the machine
learning model Therefore, from the data we chose the most important features based on the effect
on the target variable and business impacts. Below are the features we selected to be included in the
modeling.

Features

Year of  the claim/procedure Site Weight (Monotonicity Constraint Feature)

Metropolitan statistical areas Ownership of  the site

Average Income (MSA-level) Location of  the Site (Urban/Rural)

Population (MSA-level) Teaching Site

Average Life Expectancy (MSA-level) Median Covid Payment

Haversine Distance using Latitude and Longitude Cluster Numbers (not included in the final model)

Hospital categories based on numbers of  beds Category of  Procedure (ex. Ortho, Cardio, etc.)

Type of  Site - Inpatient, Outpatient, Ambulatory Average Procedure Cost



surgery centers (ASC)

Type of  surgery (51 unique groups) % Inpatient Claims

Mean Claim Payout from Insurance Company
(Target)

MSA

Table 4. Features used for modeling

Finally, upon selecting the features, we used an 80-20 data split for training and testing purposes.
Within the 80% training data, we further split it into 60% for pure model training and 20% for
bayesian optimization and hyperparameter tuning.

3.7 Model Development and Training

For the implementation of our machine learning models, we tried five different approaches for
solving the problem. The baseline model we used was Linear Regression, but then we moved to
tree-based methods. The best-performing method turned out to be gradient boosting, specifically
XGBoost. We have explained the implementation and results in further detail in the sections below.

Fig 12. Machine Learning algorithms implemented in the project

3.8 Decision Constraints

According to the business requirement from J&J, we must enforce the constraint that– the payout
for the ASC site should be lower than the Inpatient care facility at MSA and procedure level. A
common type of constraint in this situation is that certain features bear a monotonic relationship to
the predicted response:



● f(x1, x2,…,x,…,xn−1,xn) ≤ f(x1,x2,…,x′,…,xn−1,xn)

whenever x≤x′ is an increasing constraint; or

● f(x1, x2,…,x,…,xn−1,xn) ≥ f(x1,x2,…,x′,…,xn−1,xn)

whenever x≤x′ is a decreasing constraint.

XGBoost can enforce monotonicity constraints on any of the features using the monotone
parameter. In our case, we have created a feature site_weight = 0 if the site is ASC, otherwise 1. We
imposed increasing monotonic constraints on site_weight while training the XGBoost model. We
created an array of length 29, with all 0s and 1 on the starting index. We imply that the model should
be monotonically increasing for variable 1 and not enforce constraints on the rest of  the variables.

After enforcing this constraint in our model and comparing for (msa, group, year) for ASC and
inpatient in the training + test dataset, we are predicting correctly for all 81 cases (unique
combination of  MSA, Group and Year).

3.9 Model Evaluation and Tuning

Bayesian optimization is a method for the global optimization of black-box functions. It is
particularly useful for optimizing expensive functions, such as those that take a long time to evaluate
or require physical experiments to be run. The basic idea behind Bayesian optimization is to
construct a probabilistic model of the function being optimized, based on observations of the
function, and then use this model to choose the next point to evaluate to maximize the expected
improvement in the function's value.

One of the key equations used in Bayesian optimization is the acquisition function, which
determines the next point to evaluate. The acquisition function considers the uncertainty in the
probabilistic model of the function and the expected improvement in the function's value at each
point. The exact form of the acquisition function depends on the specific method being used, but a
common form is the expected improvement function, which is defined as(𝐸𝐼)

𝐸𝐼(𝑥) =  𝑝(𝑥) *  (𝑓* − 𝑓(𝑥))

where is the current best value of the function, is the predicted value of the function at point𝑓* 𝑓(𝑥)
, and is the probability that the function has a maximum at .𝑥 𝑝(𝑥) 𝑥

Another important equation in Bayesian optimization is the probability of improvement (𝑃𝐼)
function, which is defined as

𝑃𝐼(𝑥) =  𝑃(𝑓(𝑥) >  𝑓*)



where is the probability of the given event. The probability of improvement function gives the𝑃(𝑋)
probability that the function will improve if it is evaluated at point x. This can be useful for deciding
how many points to evaluate, for example, by choosing a set of points with the highest probability of
improvement. Bayesian optimization can be applied to a wide range of optimization problems, from
hyperparameter tuning in machine learning to design optimization in engineering. It has been shown
to be effective in many scenarios and can provide significant improvements in the speed and
accuracy of  global optimization.

We tried to implement bayesian optimization for hyperparameter tuning of the XGBoost models.
We have considered the following parameters while training the model:

1) n_estimators: Number of gradient-boosted trees. We considered a range from 400 to 1000
trees

2) gamma: Minimum loss reduction required to make a further partition on a leaf node of the
tree. The larger gamma is, the more conservative the algorithm will be. We considered the
values in the range from 0 to 5.

3) reg_alpha: L1 regularization term on weights. Increasing this value will make the model more
conservative. We considered the range from 0 to 20

4) max_depth: Maximum depth of a tree. Increasing this value will make the model more
complex and more likely to overfit. We considered the range from 3 to 10.

Below we have created two scatter plots of train and test MAPE for 100 trials of Bayesian
Optimization for hyperparameter tuning. The best Test MAPE is 14.02%

Fig 13. Plot of  Train MAPE for 100 trails of  Bayesian Optimization

Also, we used an objective as ‘reg: squared error’ and enforced monotonicity constraints using the
monotone parameter. One Caveat of Bayesian Optimization is that since it builds surrogate
functions based on Gaussian Processes, we can’t ensure getting the same combination of
hyperparameters after 100 trials every time.



Fig 14. Plot of  Test MAPE for 100 trails of  Bayesian Optimization

4. Results

4.1 Performance of Models

As recorded earlier, we implemented five different machine learning approaches in the search of the
optimal best-performing algorithm. Every experiment helped us gain more insight into the problem
and ultimately helped us come to a final approach which was fast and accurate. Below, we list the
performances (measured in MAPE) for all the models we worked with throughout this project using
different experiments.

MAPE is defined as

where At is the actual value and Ft is the predicted value.

Model Performance results with Clustering Techniques

We have tried embedding the cluster numbers with our existing master dataset and retrained the
models. These cluster numbers have been generated through different approaches by dividing the



cost discharge data into different clusters mentioned in the Clustering section above. Among the two
different clustering approaches mentioned, model evaluation results after clustering with K-Medoids
outperformed in comparison with the DBScan clustering algorithm. The results for model
evaluation with K-Medoids clustering are presented below:

Model Test MAPE

Elastic Net 27.29%

Decision Tree 23.25%

RandomForest 21.50%

Gradient Boosting 14.87%

XGBoost 14.68%

Table 5. Model Comparison with MAPE results after adding cluster numbers as features

We can clearly see that the addition of new information in the form of cluster numbers didn’t help
much in terms of improving the model evaluation results. Due to this, we discarded the approach of
using cluster numbers with our master dataset for the final model version.

Final Model Performances

The following results have been generated upon performing model training and evaluation on the
final set of  features:

Model Test MAPE

Linear Regression 30.86%

Decision Trees 28.94%

Random Forest 24.04%

Elastic Net 21.34%

XGBoost 14.02%

Table 6. Model Comparison with MAPE results

4.2 Feature Importances

From the XGBoost model, which we ultimately chose as the final algorithmic approach for solving
this problem of predicting insurance payouts, we calculated the features which were most important



to the model’s training and accuracy. Below we list out all the features in order of their importance
along with the resulting numerical factor.

Fig 15. Plot of  top 8 most important features for XGBoost Model

Feature Description Importance
Factor

Procedure Type of  surgery 0.58

Inpatient One Hot Encoded - Inpatient Site of  Care 0.24

Site Weight Monotonic Constraint Flag - 1/0 0.036

Pat Cost Average procedure cost 0.014

Life Expectancy Average Life Expectancy (MSA-level) 0.013

Haversine
Distance

Haversine Distance using Latitude and Longitude 0.011

Year Year of  the claim/procedure 0.011

Population Population (MSA-level) 0.008

Table 7. Feature Importance



4.3 Performance Comparison with DataRobot Model

The goal of this project was to not only build a robust machine learning model for predicting
insurance payouts but also to eradicate the dependency on DataRobot, which is a tool J&J was
currently relying on for this task. With our optimized and best-performing XGBoost model, we were
able to outperform the DataRobot algorithm in both its accuracy and training time. The XGBoost
model turned out to be ~15% better in terms of performance and about ~2.5 times faster to train
and predict. The comparisons between our model and the DataRobot model are highlighted below.

Model MAPE Training Time

DataRobot 16.11% ~300 seconds

XGBoost 14.02% ~120 seconds

Table 8. Model Comparisons with DataRobot

Following the overall improvement in prediction accuracy and training time, we completed the
modeling, evaluation, and prediction phases. With that said, there still could be potential
improvements to the modeling approach in future iterations and we talk about them in the next
section.

4.4 Procedure-wise Performance

One of the important goals of the project was to create a pipeline step for finding the surgical
procedure level performance (MAPE). The results along with those of the DataRobot Model are in
the below Table 9.

Procedure Model MAPE DataRobot MAPE

ankle_fix 19.79% 25.57%

ant_cerv_fusion 16.85% 21.31%

bariatric 9.70% 11.71%

breast reconstruction 12.69% 15.60%

bsp 21.18% 12.16%

bunionectomy 13.25% 27.99%

cardiac ablation 14.76% 16.84%

cardiac_ablaton_ice 11.45% 22.32%

colorect 15.85% 10.02%

fess 15.56% 24.07%



hepat 29.94% 32.23%

hernia 20.88% 11.73%

hysterect 12.82% 11.96%

lap appendectomy 9.20% 13.51%

mastectomy 15.04% 23.19%

post_tls_fusion 11.89% 8.96%

prox_tibia_fixation 4.53% 16.18%

radius/ulna internal fixation 11.83% 13.12%

robotic_assisted_surgery 21.66% 18.15%

rtc_slap_bank 18.05% 15.93%

septoplasty 13.70% 14.29%

tha 8.78% 6.81%

tka 13.03% 8.83%

tpa 27.33% 7.07%

Table 9. Procedure-level Performance Comparison with DataRobot

5. Goals and Next Steps

The project solved two key problems, one being the elimination of dependencies on the DataRobot
which was important to the business team since maintaining DataRobot adds additional external
costs. In addition to that, the model that we have implemented in this project also improves in terms
of performance. This saves licensing costs and improves the prediction power of the model. With
these predicted results, the J&J team can use it for revenue from sales of their devices. The
prediction of insurance payouts can help JJMD price its devices in a way which yields more profit
and sales. The complete end-to-end pipeline is highly scalable and can be easily adapted across
multiple verticals within J&J. The project is also expected to impact J&J Data Scientists, the medical
devices pricing team, patients, and the broader J&J group.

There are some next steps that we have highlighted for the future below:

● There is potential in exploring options for the explainability of the model, and it can be
established using LIME and SHAP.

● Once the model is deployed to production it should be monitored for drifts.

● Developing optimal pricing and product penetration strategies to boost sales.



6. Contributions

● Mahesh Jindal: Contributed to data preprocessing and combining raw data from different
sources. Built the master data file that is being used for further model building. Also worked
on designing clustering techniques and implementing Missing Data Imputation Techniques.

● Prerit Jain: Designed and experimented with various machine learning algorithms and varied
approaches to determine the best-performing algorithm. Worked on interpreting the
clustering results and testing with different iterations of  the test-train split.

● Parth Gupta: Performed extensive model evaluation post implementing monotonicity
constraints to select the final model. Implemented bayesian optimization to find optimal
hyperparameters for the XGBoost model.

● Ayush Baral: Performed exploratory data analysis to understand the data. Contributed to
feature selection and the creation of  new features for the master dataset.

● Rahulraj Singh (Team Captain): Set up meetings and milestones, and managed progress.
Sourced and prepared life expectancy and income data to be used for modeling. Contributed
to model validation and testing.
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