
COMS 4995 - Applied Machine Learning
Fake Job Post Detection (Team 38)

Ayush Baral (ab5247), Chaewon Park (cp3227), Erin Josephine Donnelly (ejd2170)

Mukesh Bangalore Renuka (mb4862), Smarth Gupta (sg3868)

Abstract

Cyber criminals use fake job postings to obtain
personally identifiable information (PPI) from
unknowing applicants. As students pursuing
internships and employment in a job market
undergoing circumstantial shifts, we are motivated
to identify and avoid dangerous job postings that
pose a threat to ourselves, our peers, and many
others in their job search.

Our core task is predicting the fraudulence of job
postings using binary classification models based
on job postings’ text features and meta-features
extracted from contextual embedding models, and
formulating actionable insights as to which
description features are most indicative of fraud.

Dataset Description

We used the Employment Scam Aegean Dataset
from the University of Aegean’s Laboratory of
Information & Communication Systems Security.
Data was gathered and analyzed by University of
Aegean, George Mason University, and Carnegie
Mellon University. Dataset contains 17,880 job
postings- 17,014 legitimate, 866 fraudulent-
published between 2012 and 2014. Variables
include 4 strings, 4 HTML fragments, 5 binary, and
5 nominal features and meta-features.

Exploratory Data Analysis & Data
Preprocessing

I. EDA
Missing value analysis: We see that 11 out of the
18 features have occasional missing values with
two columns having a majority of their values
missing. We also see that dropping missing values
might further aggravate the imbalance of the

dataset and hence we choose to estimate, predict or
encode missing values. We also note that the
absence of certain features might itself be a strong
predictor of a posting being fraudulent and hence
we encode this separately as a boolean variable.

II. Data preprocessing
We dropped ['salary_range', 'department', 'job_id'],
as the first two have over 80% and 60% of its
values missing, and because ['job_id'] is simply an
ordinal id string that conveys no meaning. Boolean
columns that indicate whether or not the columns [
['description', 'company_profile', 'requirements',
'benefits'] exist were added in asd well.

To correctly encode column information, we
checked the data types and segregated them into
four groups:

● target_encoded_columns = ['industry', 'functi
on', 'location']

● one_hot_encoded_columns = ["employment
_type", "required_experience", "required_ed
ucation"]

● text_columns = ['description', 'company_pro
file', 'requirements', 'benefits']

● text_len_columns = ['has_description',
'has_company_profile', 'has_requirements',
'has_benefits']

We applied target encoding on
['industry', 'function', 'location'], because one-hot
encoding increased feature number to 4000, which
may only overwhelm the model with no or very
marginal improvement. Additionally, target
encoding allows us to weigh or order the values in
these features by some natural metric. After
applying our proposed encoding method, we ended
up with a total of 36 features.

Furthermore, we trained and evaluated the model
using four different methods to vectorize the text
features and compared them in the result section.

1. Non-text features only
2. Non-text features + CountVectorizer
3. Non-text features + TF-IDF Vectorizer
4. Non-text features + BERT embeddings

For Method 2 and 3, we employed the more
traditional method of generating word embeddings
by aggregating all text columns into one and then
lemmatizing it using WordNetLemmatizer and
applying TfidfVectorizer using English stop words,
min_df=100, and max_features=128 parameters.

For Method 4, we used Bidirectional Encoder
Representations from Transformers (BERT) to
extract embeddings of size (17880,128). The small
BERT model has 2 attention heads, hidden size of
128 and 2 transformer blocks.

Another caveat is that the dataset has a highly
imbalanced ratio of 1:20 between the fraudulent
and legitimate examples, so we used stratified
splitting and applied four methods to mitigate
imbalance: random up-sampling, random
down-sampling, Synthetic Minority Oversampling
Technique (SMOTE), and balanced class weights.

Evaluation Metrics and Model Results
In our problem, accuracy is not an appropriate
metric because our data has a heavily biased label
distribution. The model should be conservative
when predicting 0 (legitimate) as the cost of false
negatives is much greater than the cost of false
positives in terms of real-world consequences.
Hence, recall is our most imperative metric. We
also plotted the Receiver Operating Characteristic
(ROC) curve and Precision-Recall (PR) curve.

To create the best classifier, we implemented four
different binary classifiers and assessed their
performance. Our models include:

● Logistic Regression
● SVMs
● Decision Trees and Random Forests
● K-Nearest Neighbors

Overall, we checked the correlation matrix
between the different features and dropped highly
correlated features (collinearity>=0.9) while just
leaving one, so that the model trains correctly with
the multicollinearity problem. For KNN, the
n_neighbors hyper-parameter was set as 3.

For SVMs, truncated SVD was used to simulate
selecting the most principal components of the
features, which was too sparse for PCA with some
encodings. Letting the number of components to
100 gave the best results through experimentation.

For decision trees and random forests,
hyperparameter tuning was also applied to find the
best maximum tree depth, number of nodes,
splitting criteria, number of trees in the forest, etc.
These changes caused no change in the validation
recall, however, and seemed to encourage
overfitting to the majority class of the training data.
It was therefore determined that the default
parameters gave the most attention to the minority
fraudulent examples.

In general, the default models without any
imbalance mitigation showed a test recall of 0.2 ~
0.6. Balanced class weights method only showed
improvement in SVM models. SMOTE and
Random Over Sampling showed a similar rate of
notable improvement.

Interestingly, the best model with the highest test
recall was the KNN + SMOTE model from Method
3 (non-text features + TF-IDF Vectorizer) with a
test recall value of 0.9075. We consider this to be
our best model despite the false positive
occurrences because we prioritize correct
identification of the minority class. Figure 1 shows
the confusion matrix for the test set for this model.

Additionally, many models achieved over 85%
recall of fraudulent examples on the test set with
varying supplementary scores including 100%
accuracy and recall on the development data with
some models. Some of these other models that
achieved relatively high recall on the test set had
significantly fewer false positive occurrences. One
such example is a model with SVM + Random
Over Sampling from Method 3, whose confusion
matrix on the test set can be found in the Appendix
as Figure 2.

The results and metrics of various models with the
aforementioned preprocessing and sampling
methods can be found in the Appendix following
this report.

Insights and Conclusion

I. Features and Relevant Information
Our process and results allow us to answer
questions we set out to answer:

How indicative of legitimacy or fraudulence are
the textual elements of a job posting?
The textual elements contained sufficient
information to predict the legitimacy or
fraudulence of job postings with up to 90% recall
of fraudulent examples.

Which features of a job posting are most indicative
of a fraudulent posting?
The text of the job postings with its various
encodings proved to be the most indicative of the
posting’s legitimacy or fraudulence. These were
more indicative than numeric features such as
number of missing values in each posting, whether
benefits was a missing value, or the target encoded
location, for presence of these values between the
two classes was not different enough. Finally, some
engineered features such as length of various
textual elements, either raw or log-scaled, even
hurt model performance, and were excluded
altogether in favor of letting the models focus on
the textual embeddings.

II. Applications and Further Action
To make our insights actionable, we can ask and
answer the questions below:

How can we use our insights to inform and protect
potential applicants?
Our results show the potential machine learning
has to protect users of various job posting
platforms against fraudulent or malicious job
postings. On an individual level, we can glean
features from job postings encountered by us, our
peers, or academic advisors in our own job
searches and feed them through the models as test

examples. On a larger scale, our models can be
implemented as a security measure by various job
posting platforms to warn users of potential threats
or prevent the postings from being available to
users altogether.

How can our predictions be used to implement a
screening process on popular job posting sites to
protect applicants on a larger scale?
Job posting platforms such as LinkedIn, Glassdoor,
and Indeed as well as other services that search
these sites to suggest job postings to potential
applicants can implement similar models to display
warning or hide postings that are deemed likely to
be fraudulent. Online career services have
developed significantly since 2012 and 2014 when
our data was obtained, and likely with it the
frequency and trickery of malicious job postings.
Not only does this demonstrate the need to
implement security measures to protect potential
applicants, but it also encourages customizations of
these models based on the specific data available
through each of these services.

How can these results encourage further
developments in fraudulence detection?
Judging by the success of our models on job
posting data and the potential benefit if applied to
job services, we anticipate that models trained on
data from different fields would show the same
potential for good. Such applications include
classifying legitimate and fraudulent instances of
housing postings, social media accounts, news
articles, online dating profiles, and e-tail sites.
Textual elements carry a great amount of
information which can be captured through
different embeddings and understood by machine
learning models, giving insights to users who may
be otherwise unaware when relying solely on
features available from human perception.

Appendix
I. Figures

Figure 1: Confusion matrix for the model with the
highest recall on the testing set. Text features were
encoded using TF-IDF Vectorizer.

Figure 2: Confusion matrix for a model with relatively
high recall on the testing set and relatively low false
positive rate. Text features were encoded using TF-IDF
Vectorizer.

II. Model Performance Charts and Performance Curves

The best performance (as measured by recall) per model is denoted in red, the best across all models is
highlighted in yellow

Method 1 Model Performance Chart—non-text features only

Default Random Over
Sample

SMOTE Balanced Class Weights

Logistic
Regression

Dev Acc: 0.9676
Dev Recall: 0.4228
Test Acc: 0.9636
Test Recall: 0.3006

Dev Acc: 0.8868
Dev Recall: 0.8817
Test Acc: 0.8798
Test Recall: 0.8150

Dev Acc: 0.8918
Dev Recall: 0.8874
Test Acc: 0.8826
Test Recall: 0.8035

Dev Acc: 0.9676
Dev Recall: 0.4228
Test Acc: 0.9636
Test Recall: 0.3006

KNN Dev Acc: 0.9824
Dev Recall: 0.7648
Test Acc: 0.9715
Test Recall: 0.5838

Dev Acc: 0.9858
Dev Recall: 0.9740
Test Acc: 0.9606
Test Recall: 0.7052

Dev Acc: 0.9804
Dev Recall: 0.9625
Test Acc: 0.9547
Test Recall: 0.7168

Dev Acc: 0.9824
Dev Recall: 0.7648
Test Acc: 0.9715
Test Recall: 0.5838

Decision
Tree

Dev Acc: 0.9966
Dev Recall: 0.9683
Test Acc: 0.9662
Test Recall: 0.6474

Dev Acc: 0.9901
Dev Recall: 0.9986
Test Acc: 0.9614
Test Recall: 0.6763

Dev Acc: 0.9958
Dev Recall: 0.9784
Test Acc: 0.9622
Test Recall: 0.6994

Dev Acc: 0.9901
Dev Recall: 0.9986
Test Acc: 0.9622
Test Recall: 0.6647

Random
Forest

Dev Acc: 0.9966
Dev Recall: 0.9697
Test Acc: 0.9790
Test Recall: 0.6590

Dev Acc: 0.9901
Dev Recall: 0.9986
Test Acc: 0.9681
Test Recall: 0.6532

Dev Acc: 0.9958
Dev Recall: 0.9827
Test Acc: 0.9681
Test Recall: 0.6994

Dev Acc: 0.9926
Dev Recall: 0.9942
Test Acc: 0.9729
Test Recall: 0.6532

SVM Dev Acc: 0.9675
Dev Recall: 0.3781
Test Acc: 0.9611
Test Recall: 0.2428

Dev Acc: 0.9090
Dev Recall: 0.9264
Test Acc: 0.9004
Test Recall: 0.8497

Dev Acc: 0.9189
Dev Recall: 0.9048
Test Acc: 0.9100
Test Recall: 0.8092

Dev Acc: 0.9009
Dev Recall: 0.9134
Test Acc: 0.8937
Test Recall: 0.8266

Method 1 Model AUC-ROC Curves Method 1 Model Precision-Recall Curves

Method 2 Model Performance Chart—non-text features + CountVectorizer

Default Random Over
Sample

SMOTE Balanced Class Weights

Logistic
Regression

Dev Acc: 0.9759
Dev Recall: 0.5974
Test Acc: 0.9726
Test Recall: 0.5318

Dev Acc: 0.9151
Dev Recall: 0.9293
Test Acc: 0.9100
Test Recall: 0.8728

Dev Acc: 0.9341
Dev Recall: 0.9048
Test Acc: 0.9304
Test Recall: 0.8439

Dev Acc: 0.9759
Dev Recall: 0.5974
Test Acc: 0.9726
Test Recall: 0.5318

KNN Dev Acc: 0.9833
Dev Recall: 0.7850
Test Acc: 0.9732
Test Recall: 0.6590

Dev Acc: 0.9812
Dev Recall: 1.0000
Test Acc: 0.9583
Test Recall: 0.7746

Dev Acc: 0.9339
Dev Recall: 1.000
Test Acc: 0.8853
Test Recall: 0.8786

Dev Acc: 0.9833
Dev Recall: 0.7850
Test Acc: 0.9732
Test Recall: 0.6590

Decision
Tree

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9667
Test Recall: 0.6821

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9642
Test Recall: 0.5838

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9622
Test Recall: 0.6416

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9676
Test Recall: 0.5954

Random
Forest

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9810
Test Recall: 0.6127

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9790
Test Recall: 0.6243

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9796
Test Recall: 0.6474

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9762
Test Recall: 0.5376

SVM Dev Acc: 0.9671
Dev Recall: 0.3203
Test Acc: 0.9662
Test Recall: 0.3006

Dev Acc: 0.9491
Dev Recall: 0.9957
Test Acc: 0.9418
Test Recall: 0.8150

Dev Acc: 0.950
Dev Recall: 0.9827
Test Acc: 0.9427
Test Recall: 0.7919

Dev Acc: 0.9218
Dev Recall: 0.9870
Test Acc: 0.9181
Test Recall: 0.8382

Method 2 Model AUC-ROC Curves Method 2 Model Precision-Recall Curves

Method 3 Model Performance Chart—non-text features + TF-IDF Vectorizer

Default Random Over
Sample

SMOTE Balanced Class Weights

Logistic
Regression

Dev Acc: 0.9741
Dev Recall: 0.5368
Test Acc: 0.9678
Test Recall: 0.4162

Dev Acc: 0.9194
Dev Recall: 0.9250
Test Acc: 0.9234
Test Recall: 0.8786

Dev Acc: 0.9283
Dev Recall: 0.9105
Test Acc: 0.9304
Test Recall: 0.8613

Dev Acc: 0.9741
Dev Recall: 0.5368
Test Acc: 0.9678
Test Recall: 0.4162

KNN Dev Acc: 0.9873
Dev Recall: 0.8095
Test Acc: 0.9776
Test Recall: 0.6590

Dev Acc: 0.9849
Dev Recall: 1.0000
Test Acc: 0.9715
Test Recall: 0.8092

Dev Acc: 0.9604
Dev Recall: 1.0000
Test Acc: 0.9326
Test Recall: 0.9075

Dev Acc: 0.9873
Dev Recall: 0.8095
Test Acc: 0.9776
Test Recall: 0.6590

Decision
Tree

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9701
Test Recall: 0.6590

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9603
Test Recall: 0.6069

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9539
Test Recall: 0.6590

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9581
Test Recall: 0.6012

Random
Forest

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9801
Test Recall: 0.5954

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.979
Test Recall: 0.6127

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9815
Test Recall: 0.6763

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9762
Test Recall: 0.5260

SVM Dev Acc: 0.9773
Dev Recall: 0.5527
Test Acc: 0.9715
Test Recall: 0.4393

Dev Acc: 0.9734
Dev Recall: 0.9971
Test Acc: 0.9687
Test Recall: 0.8728

Dev Acc: 0.9796
Dev Recall: 0.9841
Test Acc: 0.9729
Test Recall: 0.8439

Dev Acc: 0.9556
Dev Recall: 0.9827
Test Acc: 0.9539
Test Recall: 0.8844

Method 3 Model AUC-ROC Curves Method 3 Model Precision-Recall Curves

Method 4 Model Performance Chart—non-text features + BERT embeddings

Default Random Over
Sample

SMOTE Balanced Class Weights

Logistic
Regression

Dev Acc: 0.9725
Dev Recall: 0.5180
Test Acc: 0.9670
Test Recall: 0.3757

Dev Acc: 0.9075
Dev Recall: 0.9062
Test Acc: 0.9044
Test Recall: 0.7977

Dev Acc: 0.9177
Dev Recall:0.8889
Test Acc: 0.9150
Test Recall: 0.7861

Dev Acc: 0.9725
Dev Recall: 0.5180
Test Acc: 0.9670
Test Recall: 0.3757

KNN Dev Acc:0.9842
Dev Recall: 0.7460
Test Acc: 0.9734
Test Recall: 0.6185

Dev Acc: 0.9870
Dev Recall: 1.0000
Test Acc: 0.9628
Test Recall: 0.7630

Dev Acc: 0.9602
Dev Recall: 1.0000
Test Acc: 0.9320
Test Recall: 0.8786

Dev Acc: 0.9842
Dev Recall: 0.7460
Test Acc: 0.9734
Test Recall: 0.6185

Decision
Tree

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9673
Test Recall: 0.6821

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9639
Test Recall: 0.6243

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9564
Test Recall: 0.6647

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9609
Test Recall: 0.6127

Random
Forest

Dev Acc: 0.9999
Dev Recall: 0.9986
Test Acc: 0.9790
Test Recall: 0.5665

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9796
Test Recall: 0.5838

Dev Acc: 1.0000
Dev Recall: 1.0000
Test Acc: 0.9807
Test Recall: 0.6763

Dev Acc: 0.9999
Dev Recall: 0.9986
Test Acc: 0.9762
Test Recall: 0.5087

SVM Dev Acc: 0.9635
Dev Recall: 0.2496
Test Acc: 0.9603
Test Recall: 0.1908

Dev Acc: 0.9279
Dev Recall: 0.9437
Test Acc: 0.9200
Test Recall: 0.8439

Dev Acc: 0.9437
Dev Recall: 0.9134
Test Acc: 0.9334
Test Recall: 0.8035

Dev Acc: 0.9156
Dev Recall: 0.9322
Test Acc: 0.9108
Test Recall: 0.8382

Method 4 Model AUC-ROC Curves Method 4 Model Precision-Recall Curves

III. Feature Correlation Plot

